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Abstract. The extended Hubbard model with nearest neighbour inter-site corre-
lations has been studied by mapping it onto a spin-Hamiltonian. In the case of
a half-filled band the problem is equivalent to that of an anisotropic Heisenberg
model in the absence of a field. The phases in the /-Q plane obtained here are in
good agreement with those obtained by Monte Carlo simulation. The antiferromag-
netic X Y-ordered phase of the model is shown to be very similar to an RVE phase.
Extending the analogy away from half-filling, a possible dependence of the critical
temperature T, with the doping concentration § in a high-T¢ system is suggested.

1. Introduction

The Hubbard model [1] defined on a two-dimensional lattice has attracted a lot of
attention as a possible model for high-T,, superconductors [2]. In the last two decades
this model has been extensively studied for itinerant antiferromagnetism as well as for
a description of the metal-insulator transition.

Experimentally, it is known that the precursor Cu—0-based insulators show mag-
netic long-range order in two dimensions [3], while the RVB phase of Anderson does not.
Pure La,CuQ, has been shown to exhibit meta-magnetism. Further, studies in the
Er-Ba-Cu-0Q system indicate that with an increase in the concentration of dopants,
the behaviour of the system shows a cross-over from an Ising-like Insulating phase to
an XY-like metallic (superconducting) phase. This suggests that the model Hamilto-
nian used to describe such systems should take account of the anisotropic spin-spin
interaction. The half-filled Hubbard model can be mapped on to an isotropic Heisen-
berg model for U > t. Using a transformation due to Shiba [4] and Robaszkiewicz
et al {5] it is possible to transform the extended Hubbard model into an interacting
spin system with anisotropic spin~spin interaction. Varma [6] has recently used such
a model to obtain insulating behaviour near half-filling and superconductivity away
from it, in agreement with the experimental properties of systems such as BaPb_Bi, _,
. Another point in favour of the extended Hubbard model is that the superconducting
transitions in the systems mentioned above, as well as that in systems like Y-Ba-
Cu-0, occur near the metal-insulator transition. The Hubbard model with intra-site
Coulomb repulsion leads only to a continuous transition [7]. It has been suggested [8]
that in the limit U 2> ¢, the inter-site term J;; may lead to a discontinuous transition.

It may be appropriate here to comment on the relative strengths of the parameters
7 and Q. Recent estimates suggest that the inter-site interaction strength may even be
as much as fifty percent of the intra-site strength causing serious errors in calculations
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where such terms are omitted. Additionally, the in-plane coherence length in these
materials is of the order of a few lattice spacings [9].

Recently, Callaway and Zhang [10] have studied the extended Hubbard model
using a Monte Carlo technique. For the half-filled case, they obtain a phase diagram
in the @-U plane showing antiferromagnetic (AFM), charge density wave (CDW) and
ginglet-pairing states.

In the following, we consider the extended Hubbard model and using a canon-
ical transformation map it onto a spin-% anisotropic Heisenberg model. It may be
remarked that any transformation of this type breaks the spherical symmetry of the
original model, Thus while mapping back the conclusions from the anisotropic Heisen-
berg model to the original model it must be noted that magnetization could point in
any direction restoring the spherical symmetry. Within the resulting theory, we ob-
tain a phase diagram which is in agreement with the Monte Carlo results of Zhang
and Callaway. Away from half-filling, the problem is equivalent to that of an anti-
ferromagnet in an external field. The Kosterlitz—Thouless phase of the anisotropic
medel is identified with an X-Y-ordered RvB-like phase. As the occupancy parameter
§ is varied, there is an insulator-metal transition. The relevance of these to T versus
& phase diagrams of the high-T, oxides away from half-filling is also indicated. For
certain values of I/ and €, there is an indication of ferromagnetic phase, which is of
interest [11].

2, Equivalent Hamiltonian

The extended Hubbard model in two dimensions is defined by the Hamiltonian

H= —tZC}aCj, +UZnianﬁ+QZnianﬂ, (1)

{45} iv {if})

g od
where (ij) denotes sum over nearest neighbour sites { and 7 on a two-dimensional
square lattice, and o is the spin index. Adler [12] included the effect of the inter-site
term by decoupling the last term within the mean field approximation. This has the
effect of converting this term to a purely single-site term which leaves out the crucial
many-body effect contained therein. Eapen et al [13] have solved this model in the
Hubbard II] approximation, which includes finite lifetime effects [7). They obtain
three bands centred at ¢, ¢t + Un, + @nZ and t + U 4+ @nZ. For @ = 0, however,
there are only two bands as the strength associated with the third band vanishes, As
@ and [ are varied, three bands coalesce into two bands for values of QZ/U > 0.5.
This situation prevails in the two-dimensional high-T,. oxides, as well as in the three-
dimensional BaBiOj-based materials.

Hence, it is appropriate to work in the two-band regime. Further, we restrict
curselves to the singly-occupied states as t/U is assumed small. This is done by using
a prajection technique due to Chao ef ol [14] to define two operators P, and P, which
respectively project out the singly-occupied and the doubly-occupied states. The
effect of the former type of operators is to replace the operators C;, by C;, (1 ~ n;z)
while that of the latter is to replace C;, by C; n;z. To the lowest order in ¢/, the
transformed Hamiltonian is given by

(PRBHP,HP, — P,HP HPF,)

H=PHP +PHP, - s - (2)
€
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whe\.-e U = U + QnZ is the effective separation between the sub-bands. For the
Hamiltonian (1), one obtains the following relations:

PUHP ==t Y (1= 15 )ChCy0(1 = i) + @ Y (1 = mig)nsymyes (1 = )
(is) (i)
& oo’

PIHP2 = —t Z(I w)cio' je Jo’ + Q Z(]‘ ;?)nionjo"nj'i'

{id) {id)
(3)
P2HP1 = -t Z n':cr CJO’(]' j?) + Q Z Nigio e (1 )
{i5) {i7}

P2HP2=“tznwcjacgan36+UZ"£a w+QZn“‘nwn3 jE‘)'
&) io {54)
ac

We define spin operators in the standard fermion representation
sf=clc,

§ = cjf,ci‘[ (4)
S = (nyy —ny)/2.

Using these, the transformed Hamiltonian becomes, after considerable algebra,
4¢? n;n;
=- 2(1 - w)cw JU(]' jo_) + U Z(S; v SJ‘ - _"Zi)
{i7} eff (i7)
+ Q Z(l - ni?)nianjo"(l - nj'i') + Q E nio—nianja;njt-,u

{ij; (i)
o

2Q2

T U+Qnz Z(nw RigTio Ty Cj?c:d"w”:c) . (5)

Except for the hopping described by the first term of (5), one can get an effective
spin Hamiltonian by using (4) in (5) through relations of following type:

Y nyny, = EZS;’S"-{- Zn

{if) (i} {*J)
&

(6)
an Nig = _% Z(Sl)z + Znia .

Further, we replace ):(‘-,) CLCJannJG by 203, (i S; - 5787, its approxi-

mate value. Here p = (C’I,C'Ja) is assumed independent of &. The value of p depends
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only on the distance |i — j|. Following Adler [15], we have performed a preliminary
caleulation which indicates that p oscillates with distance and changes sign at around
the nearest neighbour separation. It may be noted that the first of the equations
(6) is responmsible for breaking the spin-rotational symmetry of the original model.
Similar transformations have been used by Robaszkiewicz et ol [5] and Varma [6).
However, these authors obtain, in addition, an external field term because they use a
Jordan—Wigner type of transformation to spin variables.
In addition, for § = %, one can replace [16]

- JZ[S. . SJ +0’(S=- - SJ')Z]
{43}
by
o
~—JZ(1— 5)5,--sj.
{¢5)
The final transformed Hamiltonian is

A=-t3 (1 -n,)ClioC;, (1-nz)+ 1, 5iS:

{i3) {ij}
tdpy O ASTST +87SEY+ LY (S + 03D min, Q)
{:5) i {s)
where
7 = 4¢* _8 16Q°
TU+QnZ 9 U+ @nZ
1 4Q%p
Ty = =, 4
=51+ 7o)
(8)
Jy = _anz

t?
J3=[Q-m]-

When Q =0, J, = 2J,, = —4J3 = 42/U, so that equation (7) leads to Anderson’s
result away from half-filling [2]

B=ntS (1 -n5)ChC,(L =) + IS8, 8~ Imn). (9)
o )

In the exactly half-filled case, »; = n; = 1,37(S5;)? is a ¢ number and n;, = 1 — n5.
From equation (7) one then has,

B=75 818417, (SFS; +578F) (104)
(i3} (i)
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which can be rewritten as

H=0l, Y (5;8;)+,(1-a))_ SiS} (105)
{if) {id)
where

36Q°p
3617 — 8QU — 16Q2

=1+ {(10¢)
The canonical transformation is thus seen to produce twa effects. In addition to renoi-
malizing Anderson’s exchange constant J to aJ_, it also breaks the spin-rotational
symmetry of the original model Hamiltonian given in equation (1) except in the spe-
cial case of n = 1 and (@ = 0. As we have remarked earlier, this is mot that serious
since the rotational symmetry could be obtained back when one performs the inverse
transformation {6] and quantities like magnetization could point in any direction. The
same deficiency, incidentally, is inherent in most treatments of the Hubbard model
using a functional integral approach where the Hamiltonian is usually expressed in
terms of (S,)2. The system with Hamiltonian given by equation (10) is known to
exhibit magnetic Jong-range order in two dimensions [17]. The undoped insulator is
thus characterized by the two-dimensional LRO in accordance with the experimental
observation.

3. Discussions and results

For the Hamiltonian described by equation (10}, it can be seen that there exists a gap
between 5% = 0 and 5% = +1 excitation spectrum given by

A=E(5 =£1)~E(5* =0)
= J(1-a)2

2Q°%p

TTU4Q (1)

As p is negative, the state with S = 0 lies lower in energy. For @ = 0, equation (11)
gives A = 0, showing that the triplets are degenerate, as is expected for the isotropic
Heisenberg model.

From equation (11}, it is seen that as €} tends to zero, the gap A clases in a
continuous fashion, indicating that the ordering transition at o = 1 is continuous, in
agreement with the indications available from the numerical results of Barnes el al
[18].

Let us consider some special cases.

() U > 0,Q > 0: for both I and @ positive and large compared to ¢, and U > @,
we have

_ 360 - 3QU — 16Q%  -8Q(U +2Q)

a (U +4Q) U +4Q)
36Q%p a1l 0P

36¢2 — 8QU - 16Q% 20U +2Q)°

J.

a=1+
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We find that J, is negative while o is positive and greater than 1. Notice that the
above result assumes @ > ¢t and hence the conclusions are not valid in the limit of
going to zero. In this case we have a ferromagnetic Heisenberg model with exchange
constant «J, in the presence of an additional antiferromagnetic Ising interaction of
strength J (1 —a) > 0. The spin spectrum has a gap with the triplets being separated
from the singlet by J, (1 + «)/2.

It is well known that the Ising limit of the model, in which only an FM interaction
is taken into account, corresponds to the classical latiice-gas model with attractive
interaction between nearest neighbour atoms. The XY part of the Hamiltonian takes
into account quantum hopping between nearest neighbours. The parameter p, which
depends on the distance | — j], can be varied by external factors like application of
pressure or change in dopant concentration. For positive p, the ground state belongs
to S = 1,8% =1, 1.e.it is a triplet. As pis varied by changing the external parameters,
the spin gap reduces and for some critical value of the parameter, the ground state
shows a cross-over to the 5§ = 1, §° = 0 state corresponding to an unsaturated
ferromagnet. In this region, the dominant term in the Hamiltonian becomes X Y-like.

However, for sufficiently small @, the original expressions for J, and o need to be
used, which implies J, > 0 for U and @ > 0. For p > 0, i.e, for & > 1, the ground
state has AFM X-Y ordering of the spins. This phase is very similar to the RVB phase
of Baskaran ef al [2] in that it has a gapless spin excitation spectrum [18] and it does
not have antiferromagnetic long-range order (except possibly topological long-range
order of the Kosterlitz~Thouless type). With a small amount of doping, we would
then have appreciable singlet-pairing correlations, in agreement with the Monte Carlo
simulation results of Callaway et af [10].

However, in the region of p where p_ = [(4/9)+ (2U/9Q)}—(¢/Q)*] < p < @ we have
0 < @ <1, 50 one has an AFM Z-ordered ground state. Varying p by changing the
external parameters, we have a < (0 when p < p_, atid this case describes the situation
in which one has co-existent sublattice AFM LRO of the Z-component (corresponding
to COW) and FM order of the XY-components, in qualitative agreement with MC
simulation.

(i) I > 0, @ < 0: for (U + 4@Q) positive, one has J, > 0 and in the region of
p where p. = [-2(U +2Q)/9Q] < p < 0 one has AFM LRO of the Z-components.
In classical models, the system shows LRO, but for spin § = 3 models, quantum
fluctuations destroy this order [19]. If one now moves away from the half-filled case
by doping, the system will behave like an AFM in a field, and in the region of doping
concentration (field values) where quanturn fluctuations are suppressed, the system
shows sublattice LRO. The X-Y phase can be stabilized by varying the parameter p
and this phase corresponds to the Kosterlitz-Thouless phase of the anisotropic AFM.

However, for ~U/2< Q@ < -U/4,J, <Oandforp, <p<Owehave0<a <1lso
that the ground state is a triplet and belongsto S=1, §* = 1.

If p is now decreased, o switches sign when p < p_, and so one has a XX-Z
model. For bipartite lattices and in the absence of transverse fields, the Hamiltonian
is invariant under the change J, — —J,, and one has an AFM model. In this case,
all that was remarked for the case (U +4@Q) > 0, 0 < & < 1 remains valid. For non-
bipartite lattices, however, one interesting realization is that the system with J, < 0
and J,af2 > 0 can be interpreted as a quantum lattice-gas with repulsive quantum
exchange and an attractive interaction between neighbouring atoms. In this situation,
one has a phase where co-existence of the FM order of the Z-component and the AFM
order of the X'Y-components is found; this may be a model of co-existence of diagonal
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and off-diagonal LRO in quantum spin systems.

With @ < -U/4, J, < 0, and for p > p, > 0, we have 0 < o < 1, so that we
have Ising-like AFM Z-order. If p is now decreased by varying external parameters, o
changes sign when p is decreased below p.. For non-bipartite lattices, it has been shown
that even for infinitesimally small —J,o/2, the behaviour of the system resembles that
of an XY ferromagnet [26]. Interestingly, this model with J, > 0 and J, /2 < 0 can be
interpreted as a quantum lattice-gas model with attractive quantum exchange J,a/2
and a repulsive interaction J,; it may be a possible candidate for the co-existence of
diagonal and off-diagonal LRO in quantum spin systems. It is likely that the Z-ordered
phase will become unstable for some critical value of J,a/2 = (J, «/2)_. This will most
likely indicate the stability of a superfluid phase for values of J,&/2 > (J,a/2),. We
have not succeeded in calculating (J,a/2)..

(i) U < 0, @ > 0: with U and @ such that ~U/2 > @, -U/4, J, > 0. For
p > 0, a becomes greater than 1, so that the ground state is the XY-ordered AFM
state. As remarked earlier, this XY phase of the anisotropic AFM is similar to an
RVB phase. This would signal the onset of superconductivity caused by Bose-Einstein
condensation of pre-existing singlets.

On the other hand, with @ > —U/2, one has J, < 0. With p > p'c = 2{U +
2Q)/9Q, one has co-existent FM ordering of the Z-component and AFM ordering of
the XY-components. This is the so called XX-Z model, and for bipartite lattices, one
has an AFM ground state. With decrease in p, @ switches sign as p is varied through
p. . For 0 < p < p., one has an FM Z-ordered phase. For small anisotropy, i.e. for
(1 — &) small, we have [21]

xJ,(0) 1
2y In(7l7)

Above T, there is an Onsager-like transition in 2D to a phase with paramagnetic
ground state. As p is decreased further, o hecomes greater than 1, so that the FM
XY-ordered state is now the ground state of the system. Here, we have a sort of
unsaturated ferromagnetism. For Q < —U/2, we have J, < 0. Starting with p > 0,
we find that with o > 1, the FM XY-ordered state is the ground state of the system.
Here we again have an unsaturated FM. As p is varied through zero, o becomes less
than 1, and in the region of p values satisfying p. = —[2(U + 2Q)/9Q] < p < 0 the
ground state belongs to § =1, §, = 1, and one has an FM Z-ordered phase. As p
is further decreased, at pYf, o switches sign, and for values of p less than this critical
value, one has the so-called XX-Z model. For bipartite lattices and in the absence
of transverse fields, we have an AFM ground state, but for general cases, we have
co-existent FM order of the Z-component and AFM order of the X Y-components.

(iv) U <0, @ < 0: with U and @ negative, J, is positive. Starting from p >
P. = (2]U + 2Q1/9Q)), we have a < 0. For general non-bipartite lattices, we have
co-existence of AFM Z-order (CDW) and FM XY-order (unsaturated FM).

If p is now decreased, but 0 < p < p_, we have 0 < @ < 1, and so one has Ising-like
sublattice AFM order. Further decrease in p stabilizes the AFM X Y-ordered state, and
therefore we have a RVB-like ground state. Doping the insulator in this region would
result in Bose condensation of the pre-existing singlets, leading to superconductivity.
This is in qualitative agreement with Callaway’s Monte Carlo simulation, where ap-
preciable singlet correlations are observed in the region of U < 0, @ < 0 at exactly
half-filling.

T, = (12)
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The non-half-filled case: departure from half-filling is achieved by doping the sys-
tem with holes. In the corresponding magnetic problem, it corresponds to adding a
magnetic field term to the spin Hamiltonian. For values of this field from zero to
a critical value given by H, = J,(1 — a®)!/2, the ground state remains an AFM Z-
ordered state when a first-order transition occurs to a state with AFM X Y-order [21].
The corresponding hole density is given by

50 = (1 - 02)1‘(2 .

Physically, for small doping concentration, the holes remain localized and the AFM
long-range order (LRO} is maintained. In the usual Hubbard model, in this limit, one
would have an RVB phase with only short-range order (SRO). In our model, as the
concentration of holes increases, the consequent rise in kinetic energy destroys the
LRO, and at 6 = §,, the above-mentioned transition takes place. This X-¥ ordered
phase is the Kosterlitz—Thouless phase of the 2D anisotropic Helsenberg rmodel and has
properties similar to the RVB phase. This implies the existence of a superconducting
phase near and above a deviation from half-filling #,. In this region, T, is given by
Anderson’s relation

2
T, = (6 —6).
c meﬂ' 4]

In this region, T}, increases linearly with §. Experimentally, however, this increase in T,
does nol go on indefinitely: it saturates, showing a plateau for some range of §, finally
decreases and goes to zero. This is possibly due to the presence of impurities which
provide random flelds in the antiferromagnet. In 2D Ising-like systems, such random
fields may lead to excessive domain formation which destroys the 2D-LRO. In figure 1
we show the phase diagram on the T-é plane predicted by our model, depicting the
long-range ordered AFM (Ising, I}, AFM XY-ordered (singlet superconducting, II) and
paramagnetic disordered (metallie, IT1} phases. It is seen that it reproduces most of
the features of the experimental phase diagrams [23]. However, we have not obtained
the experimentally observed spin-glass-like phase. Not much is known about this
phase, but it is believed to be due to disorder not considered by us. Further, we
have not been able to provide even a qualitative explanation for the plateau structure
mentioned above.

4. Conclusions

We have considered the effects of including the inter-site correlation terms in the
Hubbard model. Our treatment is different from that of Robaszkiewicz et af [5] and
Varma [6), who have also considered the same model in that these authors map the
extended Hubbard model onto an anisotropic Heisenberg model in the presence of an
external field while we have mapped it onto a field-free XX~Z model at half-filling.
Previous work carried out on this Hamiltonian were either in the mean-field theory
or in RPA [5]. The resulting phase diagram shows AFM Z-ordered (charge ordered)
region, AFM X Y-ordered (singlet superconducting) region and a region of co-existence
of these two phases. Varma has recently proposed that this co-existence region can
arise as an array of discommensurations in a Zordered phase. Disorder can convert
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Figure 1. Phase diagram in the §-T plane, The regions are I: aAFM Ising-like, I:
AFM X Y-ordered, III: disordered paramagnet.

this into a short-ranged CDW. Whether this phase is an artifact of the mean-field-
like theories used by these authors needs to be carefully examined, We are led to
drastically different results from our strong coupling theory. For the exactly half-
filled case, we get an AFM insulator with LRO in agreement with indications obtained
from magnetic measurements. Our calculations at and near half-filling are in good
qualitative agreement with the Monte Carlo results of Callaway et af [10]. For positive
U and ¢}, we find the existence of a ferromagnetic phase. In a small part of the positive
U~@ quadrant, we find that the ground state has antiferromagnetic LRO while in the
region where the inter-site correlation function pis positive, we get an AFM X Y-ordered
phase. In this case, doping the insulator will lead to BE condensation of pre-existing
singlets,

It may be noticed that in the isotropic model, superconductivity is realized for
infinitesimally small doping concentrations since the singlets already exist in the RVB-
like phase. Inclusion of inter-site correlations changes this situation drastically in
that we get long-range magnetic order for small doping. We believe that quantum
fluctuation effects are important in this limit. The increased spectral density of the
holes caused by quantum fluctuations is responsible for the destruction of the long-
range magnetic order upon doping. Inclusion of weak interplanar coupling can stabilize
the phases found above. A qualitative description of the phases as a function of
doping has been provided, but a rigorous phase diagram in the U-Q plane has not
been attempted.
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