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Abstract. The extended Hubbard model with nearest neighbour inter-site come 
lations has been studied by mapping it onto a spin-Hamiltonian. In the case of 
a MI-fdled band the problem is equivalent to that of an anisotropic Heisenberg 
model in the absence of a field. The phases in the U-Q plane obtained here are in 
good apement with those obtained by Monte Carlo simulation. The antiferromag- 
netic XY-ordered phase of the model is shown to be very similar to an RVB phase. 
Extending the analogy away from half-fillinp, a possible dependence of the critical 
temperature T, with the doping conanhation S in a hi&T, system is suggested. 

1. Introduction 

The Hubbard model [l] defined on a two-dimensional lattice has attracted a lot of 
attention as a possible model for high-T, superconductors [Z]. In the last two decades 
this model has been extensively studied for itinerant antiferromagnetism as well as for 
a description of the metal-insulator transition. 

Experimentally, it is known that the precursor Cu-0-based insulators show mag- 
netic long-range order in two dimensions [3], while the RVB phase of Anderson does not. 
Pure La&uO, has been shown to exhibit meta-magnetism. Further, studies in the 
Er-Ba-Cu-0 system indicate that with an increase in the concentration of dopants, 
the behaviour of the system shows a cross-over from an Ising-like insulating phase to 
an XY-like metallic (superconducting) phase. This suggests that the model Hamilto- 
nian used to  describe such systems should take account of the anisotropic spin-spin 
interaction. The half-filled Hubbard model can be mapped on to an isotropic Heisen- 
berg model for U > t .  Using a transformation due to Shiba [4] and Robaszkiewicz 
ef d [5] it is possible to transform the extended Hubbard model into an interacting 
spin system with anisotropic spin-spin interaction. Varma [SI has recently used such 
a model to obtain insulating behaviour near half-filling and superconductivity away 
from it, in agreement with the experimental properties ofsystems such as BaPb,Bi,-, 
. Another point in favour of the extended Aubbard model is that the superconducting 
transitions in the systems mentioned above, as well as that in systems like Y-Ba- 
0-0, occur near the metal-insulator transition. The Hubbard model with intra-site 
Coulomb repulsion leads only to a continuous transition [7]. It has been suggested [8] 
that in the limit U > t ,  the inter-site term Qij may lead to a discontinuous transition. 

It may be appropriate here to comment on the relative strengths of the parameters 
r a n d  Q. Recent estimates suggest that the inter-site interaction strength may even be 
as much as fifty percent of the intra-site strength causing serious errors in calculations 
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where such terms are omitted. Additionally, the in-plane coherence length in these 
materials is of the order of a few lattice spacings [9]. 

Recently, Callaway and Zhang [lo] have studied the extended Hubbard model 
using a Monte Carlo technique. For the half-filled case, they obtain a phase diagram 
in the Q-V plane showing antiferromagnetic (AFM), charge density wave (CDW) and 
singlet-pairing states. 

In the following, we consider the extended Rubbard model and using a canon- 
ical transformation map it onto a spin-4 anisotropic Heisenberg model. It may be 
remarked that any transformation of this type breaks the spherical symmetry of the 
original model. Thus while mapping back the conclusions from the anisotropic Heisen- 
berg model to the original model it must be noted that magnetization could point in 
any direction restoring the spherical symmetry. Within the resulting theory, we ob- 
tain a phase diagram which is in agreement with the Monte Carlo results of Zhang 
and Callaway. Away from half-filling, the problem is equivalent to that of an anti- 
ferromagnet in an external field. The Kosterlitz-Thouless phase of the anisotropic 
model is identified with an X-Y-ordered RVB-like phase. As the occupancy parameter 
6 is varied, there is an insulator-metal transition. The relevance of these to T versus 
6 phase diagrams of the high-T, oxides away from half-filling is also indicated. For 
certain values of U and Q, there is an indication of ferromagnetic phase, which is of 
interest 1111. 

M SLaad and D K Ghosh 

2. Equivalent Hamiltonian 

The extended Hubbard model in two dimensions is defined by the Hamiltonian 

io ( i j i  
eo 

where (ij) denotes sum over nearest neighbour sites i and j on a two-dimensional 
square lattice, and U is the spin index Adler 1121 included the effect of the inter-site 
term by decoupling the last term within the mean field approximation. This has the 
effect of converting this term to a purely single-site term which leaves out the crucial 
many-body effect contained therein. Eapen e t  ~l [13] have solved this model in the 
Hubbard 111 approximation, which includes finite lifetime effects [7]. They obtain 
three bands centred at t ,  t + Un, + QnZ and t + U + QnZ. For Q = 0, however, 
there are only two bands as the strength associated with the third band vanishes. As 
Q and U are varied, three bands coalesce into two bands for values of QZ/U > 0.5. 
This situation prevails in the two-dimensional high-T, auides, as well as in the three- 
dimensional BaBi0,-based materials. 

Hence, it is appropriate to work in the two-band regime. Further, we restrict 
ourselves to the singly-occupied states as t / U  is assumed small. This is done by using 
a projection technique due to  Chao et a1 1141 to define two operators Pl and P2 which 
respectively project out the singly-occupied and the doubly-occupied states. The 
effect of the former type of operators is to replace the operators C,, by (&(l - ni7) 
while that of the latter is to replace Ci, by Cioni,. To the lowest order in t / U ,  the 
transformed Hamiltonian is given by 

(PlHP2HP, - P2HP,HP2) # = PIHP, +P,HP2 - 
UeR 
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where U,, = U + QnZ is the effective separation between the sub-bands. For the 
Hamiltonian ( l ) ,  one obtains the following relations: 

We define spin operators in the standard fermion representation 

s; = c:pif 
S: = (nit - nil)/2. 

Using these, the transformed Hamiltonian becomes, after considerable algebra, 

(4) 

Except for the hopping described by the first term of (5), one can get an effective 
spin Hamiltonian by using (4) in (5) through relations of following type: 

4 
CnQnic  = -- + E n i , .  
i0 3 ,  i o  

Further, we replace CiaCjani,,nj,, t by 2pCiij) [Si. Sj - SfS;] ,  its approxi- 

mate value. Here p = (CjoCjo) t is assumed independent of cr. The value of p depends 
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only on the distance (i - jl. Following Adler [15], we have performed a preliminary 
calculation which indicates that p oscillates with distance and changes sign at around 
the nearest neighbour separation. It may be noted that the first of the equations 
(6) is responsible for breaking the spin-rotational symmetry of the original model. 
Similar transformations have been used by Robarzkiewicz el Q I  [5] and Varma [6]. 
However, these authors obtain, in addition, an external field term because they use a 
Jordan-Wigner type of transformation to spin variables. 

M S Laod and D K Ghosh 

In addition, for S = $, one can replace [16] 

The final transformed Hamiltonian is 

where 

8Q 168’ -- 4t2 
Jz = U + Q n Z  9 + U + Q n Z  

U t  4Q2p QnZ 1 
4 
3 

J2 = --QnZ 

U +Qnz J3 = [Q - 

When Q = 0, J ,  = 2J,, = -45, = 4 t 2 / U ,  so that equation (7) leads to Anderson’s 
result away from half-filling [2] 

In the exactly half-filled case, ni = nj = 1, C(Si)’ is a c number and nio = 1 - niB. 
From equation (7) one then has, 
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which can he rewritten as 

where 

36Q2p a = l +  
361’ - 8QlJ - 16Q2 . 

The canonical transformation is thus seen to  produce two effects. In addition to renor- 
maliing Anderson’s exchange constant J to aJ,, it also breaks the spin-rotational 
symmetry of the original model Hamiltonian given in equation (1) except in the spe- 
cial case of n = 1 and Q = 0. As we have remarked earlier, this is not that serious 
since the rotational symmetry could be obtained back when one performs the inverse 
transformation [6] and quantities like magnetization could point in any direction. The 
same deficiency, incidentally, is inherent in most treatments of the Hubbard model 
using a functional integral approach where the Hamiltonian is usually expressed in 
terms of (S,)’. The system with Hamiltonian given by equation (IO) is known to 
exhibit magnetic long-range order in two dimensions [li’]. The undoped insulator is 
thus characterized by the two-dimensional LRO in accordance with the experimental 
observation. 

3. Discussions and results 

For the Hamiltonian described by equation (lo), it can be seen that there exists a gap 
between S” = 0 and S” = kl  excitation spectrum given by 

A = E(S’ = kl) - E(S’ = 0) 
= Jz( l  - a ) / 2  

As p is negative, the state with S” = 0 lies lower in energy. For Q = 0 ,  equation (11) 
gives A = 0, showing that the triplets are degenerate, as is expected for the isotropic 
Beisenberg model. 

From equation ( l l ) ,  it is seen that as Q tends to zero, the gap A closes in a 
continuous fashion, indicating that the ordering transition at Q = 1 is continuous, in 
agreement with the indications available from the numerical results of Barnes et a/  

[181. 
Let us consider some special cases. 

(i) U > 0, Q > 0: for both U and Q positive and large compared to t ,  and U > Q ,  
we have 

36t2 - 8QU - 16Q2 -8Q(U + 2Q)  
9 ( u  + 4Q) e 9 ( U + 4 Q )  

J, = 

9Qp 
2(U + 2Q) ’ 

-1- 36Q2p a = l t  
36t2 - 8QU - 169’ 
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We find that J ,  is negative while a: is positive and greater than 1. Notice that the 
above result assumes Q > t and hence the conclusions are not valid in the limit of Q 
going to zero. In this case we have a ferromagnetic Heisenberg model with exchange 
constant aJz in the presence of an additional antiferromagnetic Ising interaction of 
strength Jz(l- a:) > 0. The spin spectrum has a gap with the triplets being separated 
from the singlet by Jz(l + a:) /2 .  

It is well known that the king limit of the model, in which only an F M  interaction 
is taken into account, corresponds to the classical lattice-gas model with attractive 
interaction between nearest neighbour atoms. The XY part of the Hamiltonian takes 
into account quantum hopping between nearest neighbours. The parameter p, which 
depends on the distance li - j l ,  can be varied by external factors like application of 
pressure or change in dopant concentration. For positive p, the ground state belongs 
to S = 1, Sd = 1, i.e. it is a triplet. Asp is varied by changing the external parameters, 
the spin gap reduces and for some critical value of the parameter, the ground state 
shows a cross-over to the S = 1, S' = 0 state corresponding to an unsaturated 
ferromagnet. In this region, the dominant term in the Hamiltonian becomes XY-like. 

However, for sufficiently small Q, the original expressions for J ,  and a need to be 
used, which implies J ,  > 0 for U and Q > 0. For p > 0, i.e. for a > 1, the ground 
state has AFM X-Y ordering of the spins. This phase is very similar to the RVB phase 
of Baskaran e l  a/ [2] in that it has a gapless spin excitation spectrum [IS] and it does 
not have antiferromagnetic long-range order (except possibly topological long-range 
order of the Kosterlitz-Thouless type). 'With a small amount of doping, we would 
then have appreciable singlet-pairing correlations, in agreement with the Monte Carlo 
simulation results of Callaway et a2 [IO]. 

However, in the region of p where %= [(4/9)+(ZU/9g)-(t/g)'1 < p < 0 we have 
0 < a < 1, so one has an AFM Z-ordered ground state. Varying p by changing the 
external parameters, we have a: < 0 when p < %, and this case describes the situation 
in which one has co-existent sublattice AFM LRO of the Z-component (corresponding 
to COW) and F M  order of the XY-components, in qualitative agreement with MC 
simulation. 

(ii) U > 0, Q < 0: for (U + 4Q) positive, one has J ,  > 0 and in the region of 
p where p, = [-2(V + 2Q)/9Q] < p < 0 one has AFM LRO of the Z-components. 
In classical models, the system shows LRO, but for spin S = f models, quantum 
fluctuations destroy this order [19]. If one now moves away from the half-filled case 
by doping, the system will behave like an AFM in a field, and in the region of doping 
concentration (field values) where quantum fluctuations are suppressed, the system 
shows sublattice LRO. The X-Y phase can be stabilized by varying the parameter p 
and this phase corresponds to the Kosterlitz-Thouless phase of the anisotropic AFM. 

However, for - U / 2  < Q < -U/4, J ,  < 0 and for p, < p < 0 we have 0 C a < 1 so 
that the ground state is a triplet and belongs to S = 1, S" = 1. 

If p is now decreased, a switches sign when p < pc,  and so one has a XX-Z 
model. For bipartite lattices and in the absence of transverse fields, the Hamiltonian 
IS invariant under the change J ,  -+ - J z ,  and one has an AFM model. In this case, 
all that was remarked for the case (U + 4Q) > 0, 0 < a: < 1 remains valid. For non- 
bipartite lattices, however, one interesting realization is that the system with J ,  < 0 
and J,a: /2  > 0 can be interpreted as a quantum lattice-gas with repulsive quantum 
exchange and an attractive interaction between neighbouring atoms. In this situation, 
one has a phase where eo-existence of the FM order of the Z-component and the AFM 
order of the XY-components is found; this may be a model of eo-existence of diagonal 
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and off-diagonal LRO in quantum spin systems. 
With Q < -U/4, J ,  < 0, and for p > pc > 0, we have 0 < a < 1 ,  so that we 

have king-like AFM 2-order. If p is now decreased by varying external parameters, a 
changes sign when p is decreased below p,. For non-bipartite lattices, it has been shown 
that even for infinitesimally small -J ,a /2 ,  the behaviour of the system resembles that 
of an XY ferromagnet [20]. Interestingly, this model with J ,  > 0 and J , a / 2  < 0 can be 
interpreted as a quantum latticegas model with attractive quantum exchange J , a / 2  
and a repulsive interaction J,; it may be a possible candidate for the cc-existence of 
diagonal and off-diagonal LRO in quantum spin systems. It is likely that the 2-ordered 
phase will become unstable for some critical value of J,a/2 = ( J ,  a/2),.  This will most 
likely indicate the stability of a superfluid phase for values of J , a / 2  > (J ,a/Z) , .  We 
have not succeeded in calculating ( J , a / 2 ) , .  

(iii) U < 0, Q > 0: with U and Q such that - U / 2  > Q ,  -U/4, J,  > 0. For 
p > 0, a becomes greater than 1, so that the ground state is the XY-ordered AFM 
state. As remarked earlier, this XY phase of the anisotropic AFM is similar to an 
RVB phase. This would signal the onset of superconductivity caused by Bose-Einstein 
condensation of pre-existing singlets. 

On the other hand, with Q > - U / 2 ,  one has J ,  < 0. With p > p’c = 2(U + 
2Q)/9Q, one has cc-existent FM ordering of the Z-component and AFM ordering of 
the XY-components. This is the so called XX-2 model, and for bipartite lattices, one 
has an AFM ground state. With decrease in p ,  a switches sign as p i s  varied through 
p: . For 0 < p < p, ,  one has an FM Z-ordered phase. For small anisotropy, i.e. for 
(1 -a) small, we have I211 

Above Tc, there is an Onsager-like transition in 2D to a phase with paramagnetic 
ground state. As p is decreased further, a becomes greater than 1, so that the FM 
XY-ordered state is now the ground state of the system. Here, we have a sort of 
unsaturated ferromagnetism. For Q < - U / 2 ,  we have J ,  < 0. Starting with p > 0, 
we find that with a > 1, the Fhl XY-ordered state is the ground state of the system. 
Here we again have an unsaturated FM. As p is varied through zero, a becomes less 
than 1, and in the region of p values satisfying p ,  = +(U + 2Q)/9Q] < p < 0 the 
ground state belongs to S = 1 ,  S, = 1, and one has an FM Z-ordered phase. As p 
is further decreased, at pfl, a switches sign, and for values of p less than this critical 
value, one has the so-called XX-2 model. For bipartite lattices and in the absence 
of transverse fields, we have an AFM ground state, but for general cases, we have 
co-existent FM order of the Z-component and AFM order of the XY-components. 

(iv) U < 0, Q < 0: with U and Q negative, J ,  is positive. Starting from p > 
p, = (21 U + 2Q1/91Q1), we have a c: 0. For general non-bipartite lattices, we have 
co-existence of AFM 2-order (CDW) and FM XY-order (unsaturated FM). 

If p is now decreased, but 0 < p < p,, we have 0 < a < 1 ,  and so one has king-like 
sublattice AFM order. Further decrease in p stabilizes the AFM XY-ordered state, and 
therefore we have a RVB-like ground state. Doping the insulator in this region would 
result in Bose condensation of the preexisting singlets, leading to superconductivity. 
This is in qualitative agreement with Callaway’s Monte Carlo simulation, where ap- 
preciable singlet correlations are observed in the region of U < 0, Q < 0 at exactly 
half-filling. 
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The non-half-filled case: departure from half-filling is achieved by doping the sys- 
tem with holes. In the corresponding magnetic problem, it corresponds to adding a 
magnetic field term to the spin Hamiltonian. For values of this field from zero to 
a critical value given by H, = J,(1 - u')~/' ,  the ground state remains an AFM Z- 
ordered state when a first-order transition occurs to a state with AFM XY-order 1211. 
The corresponding hole density is given by 

Physically, for small doping concentration, the holes remain localized and the AFM 
long-range order (LRO) is maintained. In the usual Hubbard model, in this limit, one 
would have an RVB phase with only shortrange order (SRO). In our model, as the 
concentration of holes increases, the consequent rise in kinetic energy destroys the 
LRO, and at 6 = 6,, the above-mentioned transition takes place. This X-Y ordered 
phase is the Kosterlitz-Thouless phase of the zD anisotropic Heisenberg model and has 
properties similar to the RVB phase. This implies the existence of a superconducting 
phase near and above a deviation from half-filling 6,. In this region, '7, is given by 
Anderson's relation 

In this region, T, increases linearly with 6. Experimentally, however, this increase in T, 
does not go on indefinitely: it saturates, showing a plateau for some range of 6, finally 
decreases and goes to zero. This is possibly due to the presence of impurities which 
provide random fields in the antiferromagnet. In zD king-like systems, such random 
fields may lead to excessive domain formation which destroys the 2D-LRO. In figure 1 
we show the phase diagram on the T-6 plane predicted by our model, depicting the 
long-range ordered AFM (king, I), AFM XY-ordered (singlet superconducting, 11) and 
paramagnetic disordered (metallic, 111) phases. It is seen that it reproduces most of 
the features of the experimental phase diagrams [23]. However, we have not obtained 
the experimentally observed spin-glass-like phase. Not much is known about this 
phase, but it is believed to be due to  disorder not considered by us. Further, we 
have not been able to provide even a qualitative explanation for the plateau structure 
mentioned above. 

4. Conclusions 

We have considered the effects of including the inter-site correlation terms in the 
Hubbard model. Our treatment is different from that of Rohaszkiewicz el a l  [5] and 
Varma [6], who have also considered the same model in that these authors map the 
extended Hubbard model onto an anisotropic Heisenberg model in the presence of an 
external field while we have mapped it onto a field-free XX-Z model at half-filling. 
Previous work carried out on this IIamiltonian were either in the mean-field theory 
or in RPA [5]. The resulting phase diagram shows AFM Zordered (charge ordered) 
region, AFM XY-ordered (singlet superconducting) region and a region of co-existence 
of these two phases Varma has recently proposed that this co-existence region can 
arise as an array of discommensurations in a Zordered phase. Disorder can convert 
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.___-- L 6. Mngoelirotion or deviolion 

tram halt-filling 

Figure I. Phase diapam in the 6-T plane. The regions are I: AFM Iring-like, 11: 
A F M  XY-ordered, III: disordered paramawet. 

this into a short-ranged CDW. Whether this phase is an artifact of the mean-field- 
like theories used by these authors needs to be carefully examined. We are led to 
drastically different results from our strong coupling theory. For the exactly half- 
filled case, we get an AFM insulator with LRO in agreement with indications obtained 
from magnetic measurements. Our calculations at and near half-filling are in good 
qualitative agreement with the Monte Carlo results of Callaway et ai [lo]. For positive 
Uand Q, we find the existence of aferromagnetic phase. In asmall part of the positive 
V-Q quadrant, we find that the ground state has antiferromagnetic LRO while in the 
region where the inter-site correlation function p is positive, we get an AFM XY-ordered 
phase. In this case, doping the insulator will lead to BE condensation of preexisting 
singlets. 

It may be noticed that in the isotropic model, superconductivity is realized for 
infinitesimally small doping concentrations since the singlets already exist in the RVB- 
like phase. Inclusion of inter-site correlations changes this situation drastically in 
that we get long-range magnetic order for small doping. We believe that quantum 
fluctuation effects are important in this limit. The increased spectral density of the 
holes caused by quantum fluctuations is responsible for the destruction of the long- 
range magnetic order upon doping. Inclusion of weak interplanar coupling can stabilize 
the phases found above. A qualitative description of the phases as a function of 
doping has been provided, but a rigorous phase diagram in the U-Q plane has not 
been attempted. 
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